HYDRODYNAMICS IN CHANNELS WITH POROUS WALLS
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P. I. Bystrov, and G. I. Anofriev

An experimental study has been made concerning the hydrodynamics of turbulent air flow
through porous channels of uniform cross section with drain or feed along the path. Formu-
las are proposed for calculating the variations in pressure and flow rate along such a channel.

A growing interest has been noted in recent years concerning the hydraulic characteristics of chan-
nels with porous walls.

The variation of pressure along a channel with drain or feed is determined according to the equation
of fluid flow at a variable rate along the path [1]:
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It is not possible to integrate Eq. (1), inasmuch as no reliable test data are available today pertaining to

the coefficients 8, A, and the value of 6.

Several authors [2-4] assumed, without any justification, that the drain (delivery) velocity or the
feed (supply) velocity of the fluid mass is perpendicular to the mainstream direction, i.e., that § = 0.

It would be more logical to assume that 6 is proportional to the local fluid velocity in the channel,
i.e., that 8§ = awx.

Neither do researchers agree on how to calculate the flow coefficients: the momentum coefficient
and the friction drag coefficient A. Test data for coefficient g are very scarce and contradictory [3, 5].
A few suggestions on estimating the values of coefficient A are givenin [5, 6].

An attempt to solve Eq. (1) was made in [4] for the case of fluid delivery through a perforated pipe
wall, assuming 6 = 0 and without accounting for the variability of the local coefficient of hydraulic drag
in the holes.

TABLE 1. Basic Geometrical Dimensions of Test Models

Potasity, Diameter of[Number of |Spacing between| Length of active seg-
* Tholes d, mm |holes per row}holes s, mm ment L, mm

0,00723 1,0 4 - 10,0 150; 250; 400; 600; 800; 1000;
1250; 1500

0,01445 1,0 4 5,0 150; 250; 400; 600; 800; 1000;
1250; 1500 ’

0,0289 1,0 8 5,0 150; 250; 400; 600; 800; 1000;
1250; 1500

0,0578 1,0 16 5,0 150; 250; 400; 600; 800; 1000;
1250; 1500

0,115 | 1,0 32 5,0 150; 250; 400; 600;

0,1136 ;| 4,0 4 10,0 150; 250; 400; 600
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Fig. 1. ApX (@) and Agx (b) as functions of x/D, d/D, and &f
(Re, = 5.0-10%. Solid lines for d/D = 0.0722 [1) & = 0.00723;
2) 0.01445; 3) 0.02892; 4) 0.05784; 5) 0.1156]. Dashed lines
for /D = 0.289 [6) & = 0.1156].

Most experiments were performed with liquid or gaseous coolants supplied through a porous wall.

Most interesting, from the point of view of hydrodynamics in a porous channel, is the study made in
[5]. The results of that study apply, however, to small relative lengths (L/D < 18) of an active channel
with such a high drag as to ensure a uniform gas feed across the porous surface. No attention was paid at
all to the hydrodynamic effects in many studies concerning the heat transfer and the friction drag with
coolant injection into a turbulent boundary layer [7].

In [3] were reported results of an experimental study, and a method was proposed for calculating the
hydraulic drag in a turbulent fluid stream through channels of uniform section with drain (feed) across a
porous wall. The test data were generalized there on the basis of 8 = 0 and 8 = const. Although most tests
were performed with a uniform feed or drain along the channel, the authors assumed that the mathematical
relations would apply also to any other kind of flow rate distribution along a porous channel.

In this study the authors tried to experimentally determine the mode of pressure and flow rate varia-
tion along a porous channel of uniform section carrying turbulent air with drain or feed along the path, at
various porosity levels and at various lengths of the active channel segment. The test object was a circu-
lar brass pipe with an inside diameter D = 13.8 mm, whose porosity was defined by the number of holes
through the wall (d =1 mm and d = 4 mm). At a total pipe length of 1800 mm, the longest active segment
was 1500 mm and the flow stabilization segment was over 20 diameters long.

The geometrical parameters of the test models of porous pipes are given in Table 1. The length of
the active segment was varied within the range L./D = 10.8-108 by means of a movable plunger pushed in
from the dead-end side.

A differential manometer or a micromanometer installed at sampling points read the entrance pres-
sure into the active segment and the pressure variation along the porous pipe, which were then recorded
accordingly. '

Each model was tested under four different operating modes, namely with four values of the Rey-
nold's number at the entrance section to the active segment, within the range Re, = 3-10%-2-10° (wy ~ 35-
240 m/sec). Tests were performed with both air drain and air feed. The respective results are shown
in Fig. 1a, b for one flow mode (Re;= 5.0 10%. The Euler number has been plotted here along the axis of
ordinates: Eu = Apy (drain) and Eu = Agy (feed).
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Fig. 2. A as a function of A,L/D: 1) d/D = 0.072; 2)
d/D = 0 29; 3) according to the formulas in [3].

Accordmg to the derived relations, the total pressure drop along a porous segment with drain A pk
= Apk/(pw0/2 ) does not depend on the channel porosity g (or the parameter ), but is determined by the
relative channel length L/D, by the relative diameter of holes d/D, and by the flow mode (Reynolds num-
ber Rey). For given values of L/D and d/D, at the same time, the mode of pressure variation along a
channel is largely affected by the porosity level.

The total relative pressure drop (Apk) based on all drain tests is shown in Fig. 2 as a function of the
total hydraulic drag coefficient A jL/D. It is evident here that the test data fit closely enough into the
equation

Ay =Pyl L (2
P pwh 275 D
2
which follows from Eq. (3)
Ap AL 2.75
A = =X2—-X)b— 2 I —(1—X)*". 3
px p@ﬁ_ ( ) 575 | ( Yl (3)

2

describing the pressure variation during a drain flow [8]. Equation (3), in turn, follows from the funda-
mental equation (1) with 8 = awg, B = const, wx = wy(1-X), b =aB, and Ay = 0.3164/4\/’Re0.

The values of coefficient b = £(d/D) had been obtained experimentally in [8] for the case of a flow with
unilateral drain.

It is evident from Fig. 2 that the test points for short channels (L/D < 18) lie farther and farther
above the calculated straight line. This can probably be explained by the effect of a dead end on the flow
pattern in short channels. On the same diagram is shown a curve (dashed line) calculated by the method
in [3] from test values for a uniform drain.

While measurements and calculations agree fairly well in the case of short channels, such as those
tested by the authors (L/D = 12), the error of calculations by the method in [3] for any other than uniform
drain distribution along the channel increase rapidly with increasing L/D ratio.

An evaluation of test results has yielded the following empirical formula for the pressure variation
with drain across a porous wall:

Ap
A = —-gX™, 4
" ol (4
2
where
a== __},\'0_ . _4_
275 D’
and

m—1.25f — 2.5 for > 3.0
m==0.3f-:-0.4 for F<3.0. (5)
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Fig. 3. Curves of k and pk/p; vs { (for drain mode): 1) &f
= 0.00723; 2) 0.01445; 3) 0.02892;  4) 0.05784.

The value of coefficient b should be taken as 1.0-1.1 for d/D < 0.1-0.12,

When f < 3.0 (especially f< 1), formula (3) gives a better agreement with test data.

In this study the total pressure drop along the channel was of the same order of magnitude as the
hydraulic drag through the porous wall and the distribution of fluid flow rate (velocity) through holes at
various channel sections was not uniform.

The degree of hydraulic nonuniformity can be expressed in terms of the parameter ny, = v/v, where
v = Gy/pZfy. On the other hand,

o TA
ng= V2L o qg= V (6)

po -+ Ap
Accepting that

. Ap
= = aX™,
e
2
we will find the mean relative pressure drop along a porous collecting pipe

y P XaX"‘dX= @ )
PR m
5 ,
Then Eq. (8) becomes
v /I kX"
6= == \/ — (8)
m+1 ‘

where k = (pw%/z)/po.

Curves of k vs f are shown in Fig. 3 for various porosity levels and various flow modes in a delivery
channel. When f > 3, evidently k becomes independent of f, depending only on the porosity and on the flow
mode.

For a channel with a porosity 0.12 > gf = 0.012 and £> 3.0, parameter k can be determined from the
equation
0.04

k= exp ( + 25¢; ) . 9

0
When k = 0.1-0.2, the air delivery is almost uniform throughout the length of a porous channel.

_ In Fig. 3 is also shown the relation pi/pg = @ . Evidently the pressure recovery is maximum when
f= 3.0.

The test data obtained for a porous channel with suction (intake channel) are shown in Fig. 1b and
Fig. 4. According to Fig. 1b, increasing the relative hole size (d/D) will result in a smaller pressure
drop along the porous channel segment. The relative pressure drop along a porous channel with injection
can be determined according to the expression in [8], on the basis of Eq. (1),
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Fig. 4. Curves of pw}/2p, = ¢ (f) and py/p, = ¥(f) (for
intake mode): 1) g = 0.00723; 2) 0.01445; 3) 0.02892;
4) 0.05784; 5) 0.1156.

_ _ L L
A, = " = 20X (2— X) ~ SED

2

[—{1—Xx)?*". (10)

Equation (10) is based on the following assumptions: B = const; wyx = wy(1-X); 8 =a;wx. Coefficient

¢ = (2~a4)/2 - B accounts for the effect of added fluid mass on the mainstream structure. The values of
this coefficient can be determined from test data in [8]. When d/D < 0.25, then ¢ = 1.0. The total relative
pressure drop along a porous channel segment is

(11)

It follows from the curves in Fig. 4 that, unlike in delivery channels, intake channels are characterized by
parameters k and pi/py almost independent of the porosity but determined by the parameter f and the flow
mode only.

The channel parameters begin to be independent of falread‘y from f = 2.5 on. Within the range of
independence pi/py = 0 and k = 0.5, When f> 2.5, the velocity through holes is v = 0. Since f=4L/D- ef
for channels of circular cross section, hence f > 2.5 and thus X/D = 0.625/¢ef such a channel becomes al-
most idle. With increasing porosity, the active channel segment will decrease in length.

The pressure variation along an intake channel can be calculated with the aid of Eq. (10). This equa-
tion is valid, however, only for porous channels with the ratio L/D < 0.625/¢5.

NOTATION
P is the static pressure;
Px = px);
P is the density;
w is the mean-over-the-section velocity in the channel;
Wy = W(X);

is the radial velocity through holes in the channel wall;
is the mass flow rate;

is the total length of the porous channel;

is the equivalent diameter of the channel;

is the diameter of holes through the porous wall;

Fon  is the area of flow section of the channel;

Zfp  is the area of holes through the channel wall;

gt Qs

f = 2fy/Fehs

&f is the porosity of the channel;

s is the spacing of holes in the channel wall;
A is the friction drag coefficient;

Re is the Reynolds number

b:4 is the coordinate;

X=x/L{0=x=1L,0=x=1);
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X is the relative coordinate along the channel;
Po = p(0);

wo = w(0);

}\'0 =A (0);

Rey = Re(0).
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